42 research outputs found

    Lower Bounds on Quantum Query Complexity

    Full text link
    Shor's and Grover's famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers_cannot_ do, and specifically how to prove limits on their computational power. We cover the main known techniques for proving lower bounds, and exemplify and compare the methods.Comment: survey, 23 page

    Negative weights make adversaries stronger

    Full text link
    The quantum adversary method is one of the most successful techniques for proving lower bounds on quantum query complexity. It gives optimal lower bounds for many problems, has application to classical complexity in formula size lower bounds, and is versatile with equivalent formulations in terms of weight schemes, eigenvalues, and Kolmogorov complexity. All these formulations rely on the principle that if an algorithm successfully computes a function then, in particular, it is able to distinguish between inputs which map to different values. We present a stronger version of the adversary method which goes beyond this principle to make explicit use of the stronger condition that the algorithm actually computes the function. This new method, which we call ADV+-, has all the advantages of the old: it is a lower bound on bounded-error quantum query complexity, its square is a lower bound on formula size, and it behaves well with respect to function composition. Moreover ADV+- is always at least as large as the adversary method ADV, and we show an example of a monotone function for which ADV+-(f)=Omega(ADV(f)^1.098). We also give examples showing that ADV+- does not face limitations of ADV like the certificate complexity barrier and the property testing barrier.Comment: 29 pages, v2: added automorphism principle, extended to non-boolean functions, simplified examples, added matching upper bound for AD

    A New Quantum Lower Bound Method, with Applications to Direct Product Theorems and Time-Space Tradeoffs

    Full text link
    We give a new version of the adversary method for proving lower bounds on quantum query algorithms. The new method is based on analyzing the eigenspace structure of the problem at hand. We use it to prove a new and optimal strong direct product theorem for 2-sided error quantum algorithms computing k independent instances of a symmetric Boolean function: if the algorithm uses significantly less than k times the number of queries needed for one instance of the function, then its success probability is exponentially small in k. We also use the polynomial method to prove a direct product theorem for 1-sided error algorithms for k threshold functions with a stronger bound on the success probability. Finally, we present a quantum algorithm for evaluating solutions to systems of linear inequalities, and use our direct product theorems to show that the time-space tradeoff of this algorithm is close to optimal.Comment: 16 pages LaTeX. Version 2: title changed, proofs significantly cleaned up and made selfcontained. This version to appear in the proceedings of the STOC 06 conferenc

    Quantum and Classical Strong Direct Product Theorems and Optimal Time-Space Tradeoffs

    Full text link
    A strong direct product theorem says that if we want to compute k independent instances of a function, using less than k times the resources needed for one instance, then our overall success probability will be exponentially small in k. We establish such theorems for the classical as well as quantum query complexity of the OR function. This implies slightly weaker direct product results for all total functions. We prove a similar result for quantum communication protocols computing k instances of the Disjointness function. Our direct product theorems imply a time-space tradeoff T^2*S=Omega(N^3) for sorting N items on a quantum computer, which is optimal up to polylog factors. They also give several tight time-space and communication-space tradeoffs for the problems of Boolean matrix-vector multiplication and matrix multiplication.Comment: 22 pages LaTeX. 2nd version: some parts rewritten, results are essentially the same. A shorter version will appear in IEEE FOCS 0

    Adversary Lower Bound for the Orthogonal Array Problem

    Full text link
    We prove a quantum query lower bound \Omega(n^{(d+1)/(d+2)}) for the problem of deciding whether an input string of size n contains a k-tuple which belongs to a fixed orthogonal array on k factors of strength d<=k-1 and index 1, provided that the alphabet size is sufficiently large. Our lower bound is tight when d=k-1. The orthogonal array problem includes the following problems as special cases: k-sum problem with d=k-1, k-distinctness problem with d=1, k-pattern problem with d=0, (d-1)-degree problem with 1<=d<=k-1, unordered search with d=0 and k=1, and graph collision with d=0 and k=2.Comment: 13 page

    Quantum query complexity of state conversion

    Full text link
    State conversion generalizes query complexity to the problem of converting between two input-dependent quantum states by making queries to the input. We characterize the complexity of this problem by introducing a natural information-theoretic norm that extends the Schur product operator norm. The complexity of converting between two systems of states is given by the distance between them, as measured by this norm. In the special case of function evaluation, the norm is closely related to the general adversary bound, a semi-definite program that lower-bounds the number of input queries needed by a quantum algorithm to evaluate a function. We thus obtain that the general adversary bound characterizes the quantum query complexity of any function whatsoever. This generalizes and simplifies the proof of the same result in the case of boolean input and output. Also in the case of function evaluation, we show that our norm satisfies a remarkable composition property, implying that the quantum query complexity of the composition of two functions is at most the product of the query complexities of the functions, up to a constant. Finally, our result implies that discrete and continuous-time query models are equivalent in the bounded-error setting, even for the general state-conversion problem.Comment: 19 pages, 2 figures; heavily revised with new results and simpler proof

    Quantum and classical strong direct product theorems and optimal time-space tradeoffs

    Get PDF
    A strong direct product theorem says that if we want to compute kk independent instances of a function, using less than kk times the resources needed for one instance, then our overall success probability will be exponentially small in kk. We establish such theorems for the classical as well as quantum query complexity of the OR-function. This implies slightly weaker direct product results for all total functions. We prove a similar result for quantum communication protocols computing kk instances of the disjointness function. Our direct product theorems imply a time-space tradeoff T^2S=\Om{N^3} for sorting NN items on a quantum computer, which is optimal up to polylog factors. They also give several tight time-space and communication-space tradeoffs for the problems of Boolean matrix-vector multiplication and matrix multiplication
    corecore